featured in #583
featured in #582
Things We Learned About LLMs In 2024
- Simon Willison tl;dr: “A lot has happened in the world of Large Language Models over the course of 2024. Here’s a review of things we figured out about the field in the past twelve months, plus my attempt at identifying key themes and pivotal moments.”featured in #580
Mirror: An LLM-powered Programming-By-Example Programming Language
- Austin Henley tl;dr: “Programming by example is a technique where users provide examples of the outcome they want, and the system generates code that can perform it. For example, in Excel, you can demonstrate how you want a column formatted through an example or two, and Excel will learn a pattern and apply it to the rest. But what if there was a programming language that only allows programming by example? Can we integrate AI into traditional programming languages?”featured in #569
How We Generated Millions Of Content Annotations
tl;dr: “As one of the foundational teams at Spotify focused on understanding and enriching the core content in our catalogs, we leverage ML in many of our products. For example, we use ML to detect content relations so a new track or album will be automatically placed on the right Artist Page. We also use it to analyze podcast audio, video, and metadata to identify platform policy violations. To power such experiences, we need to build several ML models that cover entire content catalogs — hundreds of millions of tracks and podcast episodes.”featured in #561
The LLM Honeymoon Phase Is About To End
- Baldur Bjarnason tl;dr: “This is going to get automated, weaponised, and industrialised. Tech companies have placed chatbots at the centre of our information ecosystems and butchered their products to push them front and centre. The incentives for bad actors to try to game them are enormous and they are capable of making incredibly sophisticated tools for their purposes.”featured in #548
featured in #546
Classifying All Of The Pdfs On The Internet
- Santiago Pedroza tl;dr: “I classified the entirety of SafeDocs using a mixture of LLMs, Embeddings Models, XGBoost and just for fun some LinearRegressors. In the process I too created some really pretty graphs!”featured in #545
Looming Liability Machines (LLMs)
- Murat Demirbas tl;dr: “We discussed a paper that uses LLMs for automatic root cause analysis (RCA) for cloud incidents. This was a pretty straightforward application of LLMs. The proposed system employs an LLM to match incoming incidents to incident handlers based on their alert types, predicts the incident's root cause category, and provides an explanatory narrative... The use of LLMs for RCAs spooked me viscerally.”featured in #544
LLM Applications I Want To See
- Sarah Constantin tl;dr: “But the most creative and interesting potential applications go beyond “doing things humans can already do, but cheaper” to do things that humans can’t do at all on comparable scale.” Sarah shares a list of app ideas.featured in #543