What We Don't Talk About When We Talk About Building AI Apps
- Vicki Boykis tl;dr: Vicki shares her experience and pain points when building AI applications, highlighting several aspects often not discussed in conversations: (1) Slow iteration times, (2) Build times, (3) Docker images, and more.featured in #432
featured in #429
Emerging Architectures For LLM Applications
- Matt Bornstein Rajko Radovanovic tl;dr: "In this post, we’re sharing a reference architecture for the emerging LLM app stack. It shows the most common systems, tools, and design patterns we’ve seen used by AI startups and sophisticated tech companies. This stack is still very early and may change substantially as the underlying technology advances, but we hope it will be a useful reference for developers working with LLMs now.”featured in #425
All The Hard Stuff Nobody Talks About When Building Products With LLMs
- Phillip Carter tl;dr: (1) Context windows are a challenge with no complete solution. (2) LLMs are slow and chaining is a nonstarter. (3) Prompt engineering is weird and has few best practices. (4) Correctness and usefulness can be at odds. (5) Prompt injection is an unsolved problem.featured in #418
Numbers Every LLM Developer Should Know
tl;dr: (1) 40 -90% is the Amount saved by appending “be concise” to your prompt. (2) 1.3:1 is the average tokens per word. (3) ~50:1 is the cost ratio of GPT-4 to 3.5. And more.featured in #415